Assembly language of x86 microprocessors 1
1
Assembly language for x86 microprocessors 38

LECTURE 1.

Architecture of x86 microprocessors
1.1 Evolution of microprocessors
1971:
Intel4004 — for calculator — 4 bits

Intel8008 — for terminal — 8 bits

1974:
8008 was modified into 8080 and very soon became a “standard” microprocessor

for many systems

1978:
8086 — the first 16bit microprocessor

1981:
IBM developed the first personal computer: IBM PC on the base of i8086

1983:
Intel developed improved modification of 8086: 80186

New microprocessor 80286 was announced

1993:
80586 (or Pentium)

1995:
P6

Of course, along with Intel Corp. there are other manufacturers of microprocessors:

All processors starting from 8086 are software compatible from bottom to top. It means that programs for 8086 can be executed on 80286, 80386, 80486, etc.

1.2. Architecture of 80286
80286 has two model of operation:

— real mode

— protected mode

In real mode 286 is equivalent to 86 processor, but is faster. In protected mode it can address 16 Mbytes, has 4-level protection system and can perform additional instructions.

1.2.1. Memory structure:

In real mode 286 can address

 bytes (1 Mbyte):

00000

00001

.

.

.
.

.

.

FFFFF

In protected mode max memory size =

 bytes or 16 Mbytes. Two bytes are called “word”. Each byte has its own address. The least of them is the address of the word itself:

00004

00005

...

01ABC

01ABD

 EMBED Equation.2

15 0

high digits low digits

F 7 3 2

So, word consists of 16 bit:

In memory byte with higher

address contain high order digits,

and byte with lower address —

01ABC
3 2

01ABD
F 7

low order digits:

Therefore, words are stored in “reverse” order in memory.

1.2.2. Memory segmentation

In real mode memory of 1 Mbyte consists of several segments, each of which can contain up to

 bytes (64 Kbytes). Each segment starts on address with four zero bits, i.e. address is multiple to 16. At any given time program can get access to four segments:

code segment

data segment

stack segment

extra segment (usually is used for data)

To identify the location of each segment, special segment registers are used:

CS
16 bits

code segment register

DS
16 bits

data segment register

SS
16 bits

stack segment register

ES
16 bits

extra segment register

Segment can be overlapped (in our example — stack and data segment are overlapped).

Addresses of bytes and of words in memory are calculated as sum of segment register contents and of so called “offset”:

Segment register
16
bits
0 0 0 0

+

16 bit
offset

20 bit address

123A0 — starting address

 341B — offset

157BB — physical address

When we reference to physical addresses of microprocessor, we use notation

segment:offset

For example,
123A:341B

Advantages of segment addressing:

— the length of address in instruction is only 16 bits, but total address area is

= 1 Mbyte.
 Without segments we could address only

=64 Kbytes.

— data, stack and code sections can be longer than 64 Kbytes due to usage of several segments

— the program can be placed in various parts of memory or can be relocated in memory:

1.2.3. Registers of microprocessor
Processor has 13 registers of the length 16 bits and 9 flags with length 1 bit. Usually registers are divided in 4 sets:

— general registers

— index and pointer registers

— segment registers

— instruction pointer and flags

General registers

Index and pointer registers

15
0

7 0
7 0

AX
AH
AL
Accumulator

BX
BH
BL
Base

CX
CH
CL
Counter

DX
DH
DL
Data

15 0

SP

Stack pointer

BP

Base pointer

SI

Source index

DI

Destination index

15 0

CS

Code

DS

Data

SS

Stack

ES

Extra

15 0

IP

Instruction pointer

O
D
I
T
S
Z

A

P

C
Flags (PSW — program status word)

General registers:
operands of instruction are stored in memory, but are processed in microprocessor. Before any operation one of the operands is fetched from memory to general register. High and low parts of register can be used separately, as two 8bit registers. That is why they have names AH, BH, CH, DH and AL, BL, CL, DL. When we want to operate 16bit data, we refer to registers as AX, BX, CX and DX.

Usually any of registers AX, BX, CX, DX can be used for calculation, but sometimes registers become specialized. For example, in string instructions CX register should contain the length of a string. Such specialization defines names of general registers. Accumulator, Base and Data.

Index and pointer registers

We told that address of instruction is calculated as [CS]*16+[IP]. In the same way access to data segment is performed as

[DS]*16+[BX]

[DS]*16+[SI]

[DS]*16+[DI]

To get access to stack microprocessor calculates address as

[SS]*16+[SP]

[SS]*16+[BP]

Segment registers

Code segment register — points to a segment with currently executed program. To calculate address of next instruction microprocessor performs:

[CS]*16+[IP]

Stack segment register — points to program stack area. In stack are stored following data:

— return addresses

— local variables of HLL

Data segment register — points to area, where static and global data are stored.

Extra segment register — points to extra segment, which is used for data storing (as DS) and for string manipulations.

Instruction pointer — points to next instruction to be executed. Usually address of next instruction is defined as

.

After that processor fetches next instruction from physical address

[CS]*16+[IP]

Flags:
There are 9 flags. They are usually subdivided on status flags and control flags.

Status flags are usually set to 1 or 0 after arithmetic or logical instructions, showing features of received result:

CF — carry flag (carry from high byte during addition or subtraction)

AF — auxiliary carry flag (carry or borrow from bit #3)

OF — overflow flag (=1 when result is longer than ability of 286)

ZF — zero flag (=1 if result==0)

SF — sign flag (=1 if result<0)

PF — parity flag (=1 if number of one’s in result is even)

Control flags

DF — direction flag (shows direction in string instructions)

IF — interrupt enable flag (if IF==1 then interruption is permitted)

TF — trap flag — is used to step by step execution of a program.

EXAMPLE:
every time after instruction execution all flags are set to new values:

Suppose, processor performed addition:

In this case SF=0, ZF=0, PF=1, CF=0, AF=0, OF=0.

Now let processor added:

In this case SF=1, ZF=0, PF=0, CF=0, AF=1, OF=0.

Topic 2.

Instructions of microprocessor 286

Instruction consists of several bytes (from 1 to 6 bytes). Information in it is divided into fields. The first field, Operation Code, defines what to do, other fields (Operands) define information, necessary to perform instruction:

Operation Code
Operand
. . .
Operand

Instruction can contain several operands, but in most cases it contains 1 or 2 operands. At least one of them is register and another is memory location.

2.1. Instructions with one operand
OpCode
Reg

Table 2.1

16bit registers
8bit registers

000
AX
AL

001
CX
CL

010
DX
DL

011
BX
BL

100
SP
AH

101
BP
CH

110
SI
DH

111
DI
BH

OpCode defines operation to be performed. For example, instruction Inc BP

01000
101

increases contents of BP by 1.

Of course, INC instruction can perform increment for any general register, any pointer or index register and any word (byte) in memory. Binary representation of such instruction is as follows:

Opcode
w

mod
OpCode
r/m

w defines the length of operand:
w=0 — byte

w=1 — word

mod — defines, where is operand:

mod = 11 — operand is in register

mod =

— operand is in memory

r/m — register/memory — defines, how to receive address of operand.

Example of INC CL instruction

 OpCode w
 mod OpCode r/m

1111111
0

11
000
001

 INC
 byte
 reg INC CL

Now, let

mod = 00 | 01 | 10

In this case operand is in memory and its offset is defined as sum of three values:

— displacement

— SI or DI contents or none

— SP or BP contents or none

according to table 2.2.

Table 2.2

mod
r/m field
Base register
Index register

11
000
BX
SI

001
BX
DI

010
BP
SI

011
BP
DI

100
—
SI

101
—
DI

110
BP
—

111
BX
—

Displacement in instruction can be of 8 or 16 bits or can be absent, as shown in table 2.3.

Table 2.3

mod
displacement
Comment

00
0

01
8bit
Additional byte in instruction

10
16bit
Two additional bytes in instruction

11
Operand in register: see
table 2.1

Example:

OpCode
w

mod
OpCode
r/m

Displacement

1 1 1 1 1 1 1
1

0 1
0 0 0
1 0 0

0 1 0 1 1 1 0 0

5 C

OpCode
= 1111111000=INC

 w
= 1 — operand is 16bit length

 mod
= 1 — additional displacement is 3rd byte for operand in memory

 r/m
= 1 — displacement should be added to SI register

Physical address = [DS]*16+[SI]+Displacement

Let
[SI]=A086

[DS]=F0F0

Physical address:

a) Offset=[SI]+Displ=A086+5C=A0E2

b) [DS]*16+Offset=

The length of operand in memory is 2 bytes with addresses FAFE2 (low byte) and FAFE3 (high byte).

Instead of [DS] we can use any other segment register with the help of segment override prefix:

001
seg
110
key combination for segment override prefix

00 — current ES

01 — current CS

10 — current SS

11 — current DS

Example:

SOP

OpCode
w

mod
OpCode
r/m

Displ

0 0 1
0 0
1 1 0

1 1 1 1 1 1 1
1

0 1
0 0 0
1 0 0

0 1 0 1 1 1 0 0

ES

Now the address is calculated as

[ES]*16+[SI]+Displ

Special case:
direct addressing:

displacement is 16bit long and is placed directly in instruction. This case is identified by combination

mod=00
&&
r/m=110

Example:

OpCode
w

mod
OpCode
r/m

D i s p l a
c
e m e n t

1 1 1 1 1 1 1
1

0 0
0 0 0
1 1 0

1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0

Low byte

High byte

F 0

5 A

displacement is in next two bytes

Now the physical address is calculated as [DS]*16+5AF0

2.2. Instruction with two operands

Each instruction with two operands, for example ADD, takes the value of the 1st operand, adds to it the value of the 2nd operand and stores the result. At least one of the operands is in register. Another operand can be either in register or in memory:

OpCode
d
w

mod
reg
r/m

There

OpCode — operation code

w

mod
—

reg
— the operand in register

d
— (destination)
= 0 — result will be stored in operand, defined by [mod] and [r/m]

= 1 — result will be stored in register [reg]

EXAMPLE:

OpCode
d
w

mod
reg
r/m

0 0 0 0 0 0
1
0

1 1
1 0 1
0 1 1

 CH
 BL

 mod=11 — r/m is taken from table 2.1

 operands are bytes

 destination is register

This instruction performs

CH=[CH]+[BL]

Immediate operand: in two-operand instructions data can be placed directly in instruction. This results in two advantages:

· necessary memory is reduced: address of data is not stored, only data are

· processor gets data faster

 Example:

OpCode
w
reg

Data

Data if w=1

1 0 1 1
1
1 1 1

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

 MOV

 word
 DI

This instruction loads constant F00F into DI register.

Another example:

OpCode
w

mod
OpCode
r/m

Data

Data

1 1 0 0 0 1 1
1

0 0
0 0 0
1 1 1

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

 word
 MOV
 DI

 memory

This instruction loads constant F00F into word by location [DS]*16+[DI]

Very often immediate operands are only 8-bit numbers. It is true for addition, multiplication and comparison instructions. Therefore we can reduce the size of instruction, using only one byte of data instead of two bytes. That is why some instructions have bit S (sign extending). If w=1 and s=1, processor expands the bit 7 and resulting value is 16 bits long.

Example:

OpCode
s
w

mod
OpCode
r/m

Data

1 0 0 0 0 0
1
1

0 0
0 0 0
1 1 1

0 0 0 0 1 1 1 1

 ADD

 ADD

 memory
 DI

 word length

 expansion

 sign extending

 000F

This instruction calculates physical address as [DS]*16+[DI], increases the contents of it by constant 000F and puts result back into this location.

Note that due to one additional bit S we save one byte of memory.

Topic 3

Assembly language

Now we know the architecture of 286 processor, binary formats of its instructions and addressing modes of processor. But for practical programming direct access to mod, reg, r/m and other fields is not necessary, because we will write instructions in assembly language and special translator (Assembler) will transform mnemonic abbreviations in binary codes to produce executable program:

Assembly language is a language, where are statement corresponds to one computer instruction. Other alternative for programmer — High Level Language (HLL), where one statement is translated in several instructions.

EXAMPLE:
C language

main()

{

int dest [4];

 dest[0]=0;

 dest[1]=1;

 dest[2]=2;

 dest[3]=3;

 return 0;

}

The assembly language equivalent of this program:

title Simple program

cseg
segment para public ‘CODE’

assume cs:cseg,ds:dseg,ss:sseg

main
proc
far

mov
ax,dseg

mov
ds,ax

mov
ax,a

add
ax,b

mov
c,ax

mov
ax,4c00h

int
21h

main
endp

cseg
ends

dseg
segment para ‘DATA’

a
dw
2

b
dw
3

c
dw
?

ends

sseg
segment para stack ‘STACK’

dw
64 dup(?)

ends

end
main

3.1. Assembly language operators
Each operator in language occupies 1 line and can consists of 4 fields:

[label:] mnemonic [operand[,operand]][; comment]

Elements in brackets [and] are optional.

EXAMPLE:

new_label: mov ax, 4c00h ; return to MS DOS

There

label — assigns name to given instruction. Other instructions can refer to it by this name. Labels can be max of 32 characters:

A..Z, a..z

0..9

?@_$

mnemonic — the symbolic name of instruction’s opcode. For example: MOV, ADD, SUB.

Operands — if both operands are present, the 1st is destination, the 2nd is source. For example mov ax, bx

 source

 destination

This instruction copies contents of BX register to AX register.

Operands can be :

1) register names AX, BX, CX, DX, AH, AL, ..., SI, SP

2) constants:

· binary constant: sequence of 0 and 1, finished by letter B: 10110001B

· decimal: sequence of 0, 1, 2, ..., 9 which can be finished by letter D

· hexadecimal: 0, 1, 2, ..., 9, A, B, C, D, E, F, finished by H. The first digit must be 0...9, for example: 0ffabh, 0a123h, 123h

· literal: sequence of any characters in single or double apostrophes: ‘Hello’, «Microprocessor iAPX586»

3) names of instructions and data (labels)

comments

· any sequence of characters, starting with «;»

· semicolon «;» can be the 1st symbol in the line

; these lines are for programmer

; not for computer

inc
cx
; in C language this is equivalent to cx++

dec
cx
; cx--

Each assembly operator is translated into one instruction of microprocessor

3.2. Pseudo-operators

Assembler is translator that transforms program from symbolic mnemonic notation into binary machine instructions. The programmer needs to control the process of translation. For this he can use so called pseudo-ops. They look like assembly operators but do not produce machine instructions.

[name] pseudo-op [operand] [; comment]

As usually, elements in [] are optional.

3.2.1. Equality pseudo-op

name
EQU
text
 assigns text as value to name. Assembler will substitute any occurrence of name
=
text
 ‘name’ with ‘text’

counter
equ
cx
 #define counter cx

Kbyte

equ
1024
 #define Kbyte 1024

3.2.2. Data definition pseudo-ops

[name]
DB
expression [,...]
define byte

[name]
DW
expression [,...]
define word

[name]
DD
expression [,...]
define double word.

Expression:

· can be a constant or a list of constants:

a
dw
2

array
dw
0ffffh, 0123Ah, 0ABCDH

· can be a literal

MyName
db
‘Starodubov Constantine’

· can be undefined

PlaceHolder
dw
?

· can be filled by duplication

ZeroTable
dw
100 dup(0)

TerraIncognita
db
1024 dup(?)

Parallel with C++ language.

int
array[10];

array
dw
10 dup(?)

int
a[]={1,2,3};
a
dw
1,2,3

char
s[]=«Hello»;
s
db
‘Hello’

3.2.3. Segment definition

name
SEGMENT
[alignment][type][‘class’]

. . .

name
ENDS

There alignment — we’ll use only PARA (paragraph). Paragraph is multiple to 16, that is address of a paragraph always contains last 0000.

type:
PUBLIC

COMMON

STACK

MEMORY

AT

‘class’:
internal name of a segment in exe-program for LINKER.

ASSUME
seg_register : segment_name [,...]

This pseudo-op tells to assembler, which segment register will be connected with given segment. Programmer ‘promises’ to assembler to load seg_register with corresponding address:

assume
cs:cseg, ds:dseg

mov
ax,dseg

mov
ds,ax
; ds=dseg

3.2.4. Procedure definition

name

PROC
[NEAR|FAR]

. . .

[RET]

[name]
ENDP

PROC and ENDP mark the start and the end of procedure.

NEAR
— procedure in the same segment

FAR
— procedure in other segment

3.2.5. Other pseudo-ops

PUBLIC name : type — defines data as available for other modules

EXTRN name : type — defines data, which are PUBLIC in other modules

INCLUDE filename — inserts another file during translation

END — the last assembler directive

TITLE — gives name to the program

Topic 4

Addressing modes

The processor can calculate physical addresses of operands in several different ways. We’ll divide them in 7 addressing modes:

1 — register addressing

2 — immediate addressing

3 — direct

4 — indirect register

5 — base relative addressing

6 — direct indexed

7 — base indexed

Effective Address (EA):
the distance from the segment origin to given byte or word. EA is the result of address calculation. In technical manuals of Intel term «EA» is used for machine instruction and the term «offset» — for Assembly language. EA is unsigned integer of 16 bits.

Displacement — the 16bit constant stored directly in machine instruction and used for EA calculation

Table 4.1

Addressing mode
Operand
Segment register
HLL equivalent

register
register
—
—

immediate
constant
—
—

direct
displacement

label
DS

DS
simple variable

int abc; abc=2;

indirect register
[BX]

[BP]

[DI]

[SI]
DS

SS

DS

DS
pointer int ip;

 ip=2;

base relative
[BX] + displacement

[BP] + displacement
DS

SS
structures

direct indexed
[DI] + displacement

[SI] + displacement
DS

DS
arrays,

arrays of structures

base indexed
[BX] [SI] + displacement

[BX] [DI] + displacement

[BP] [SI] + displacement

[BP] [DI] + displacement
DS

DS

SS

SS
two dim arrays,

arrays of structures

4.1. Register addressing

The operand is fetched from register and is stored in register:

mov
ds,ax
—
contents of AX is copied into DS

mov
bx,cx

4.2. Immediate addressing

The source operand is a constant and is stored not in memory but immediately in instruction

mov
cx,127

mov
ah,-25

Kbyte
equ
1024

mov
al,Kbyte
;
ERROR : al, ah can store numbers 0..255

add
cx,35

4.3. Direct addressing

EA is a part of instruction. Physical address is calculated as [DS]*16+EA

The operand in this case is a variable name:

dseg

segment

but_price
dw

?

sell_price
dw

?

profit
dw

?

dseg

ends

cseg

segment

mov

ax, sell_price

sub

ax,buy_price

mov

profit, ax

cseg

ends

4.4. Indirect register addressing

Registers BX, BP, DI or SI contain the effective address of operand, not the operand itself.

mov
ax,[bx];
moves to AX contents of address contained in BX

To load bx with initial offset, following instruction can be used:

mov
bx,offset profit

mov
[bx],ax

These two instructions are equivalent to

mov
ax,profit

C++ equivalent:

int profit;

int bx;

bx=&profit;

*bx=1000;

4.5. Base relative addressing

Effective address
EA = [BX] + displacement or

EA = [BP] + displacement

Physical address of course:

[DS] * 16 + EA

[CS] * 16 + EA

mov
bx,offset day

mov
ax,[bx] ; day

mov
ax,[bx+2]; month

mov
ax,[bx+4]; year

 displacement

0101
0
day

0102
1

0103
2
month

0104
3

0105
4
year

0106
5

struct date

{

 int day;

 int month;

 int year;

};

Following three variants are equivalent:

mov
ax,[bx]+4

mov
ax,4[bx]

mov
ax,[bx+4]

4.6. Direct indexed addressing

EA = [DI] + displacement

EA = [SI] + displacement.

Physical address = [DS] * 16 + EA.

char s[3];

mov
di,0

s[0]=’ ‘;

mov
al,’ ‘

s[1]=’ ‘;

mov
s[di],al

s[2]=’ ‘;

mov
di,1

mov
s[di],al

mov
di,2

mov
s[di]al

4.7. Base indexed addressing

EA is the sum of base register contents + index register contents + displacement (not necessary)

Example:

EA = [BX] + [SI] + displacement

Physical address = [DS] * 16 + EA

mov
ax,2[bx][di]

mov
ax,[bx+2+di]

mov
ax,[bx+2][di]

mov
ax,[bx][di+2]

5. Assembly language instructions

Instruction types:

· data transfer instructions

· arithmetic instructions

· control transfer instructions

· bit manipulation instructions + shifts

· string instructions

· interrupt instructions

· processor control instructions

5.1. Data transfer instructions

mov

mov
source,dest

Limitations:

1) memory — memory
2) mov
ds,dseg:

mov
ax,dseg

mov
ds,ax

3) mov
ds,es:

mov
ax,es

mov
ds,ax

4) mov
cs,something
EXAMPLES:

mov
ax,bx

mov
cx,850

mov
dx,memory_word

mov
cl,memory_byte

mov
si,mem_w

Exchange

XCHG

xchg
ax,bx

xchg
al,bh

xchg
mem_loc,dx

xchg
al,byte_loc

No one of operands can be constant.

Load effective address

LEA

lea
register16,memory16

lea
bx,table[di]

loads not value

but effective address of 2nd operand

Load pointer using DS

LDS

lds
register16,memory32

memory,memory+1 ® register16

memory+2,memory+3 ® DS

Load pointer using ES

LES

les
register16,memory32

memory,memory+1 ® register16

memory+2,memory+3 ® ES

Instructions MOV, XCHG, LEA, LDS, LES do not change flags of a processor.

5.2. Arithmetic instructions

The processor has four basic arithmetic instructions in various forms. Operands of them are 8 and 16 bit numbers, signed or unsigned. There also arithmetic instructions for decimal numbers (BCD format: Binary Coded Decimal).

opcode dest,source

Table 5.1.

mnemonic (opcode)
meaning
execution

add

adc

inc
add with carry

increment
dest = dest + source

dest = dest + source + CF

dest = dest + 1

sub

sbb

dec

neg

cmp
with borrow

decrement

negate

compare
dest = dest - source

dest = dest - source - CF

dest = dest - 1

dest = 0 - dest

dest - source ® flags

mul

imul

multiply

integer multiply

ax = al * source8

dx,ax = ax * source16

the same, but operands have signs

div

idiv

division

integer division

al = ax / source8, ah = remainder or

ax = dx:ax / source16, dx = remainder

—//—

All arithmetic instructions change values of flags CF, OF, ZF, SF, PF, AF.

5.2.1. Addition and subtraction

Examples:

OpCode
ax,bx

OpCode
bl,cl

OpCode
cx,mem_word

OpCode
dl,mem_byte

OpCode
mem_word,cx

OpCode
mem_byte,dl

OpCode
dx,490

OpCode
bl,35

OpCode
mem_word,350
OpCode
mem_byte,35

There OpCode = ADD, ADC, SUB, SBB, CMP.

EXAMPLE of addition and subtraction:

CMP = internal subtraction.

Result is not stored, but flags are modified.

inc

inc
bx

inc
dl

inc
mem_word
inc
mem_byte

dec

—//—

neg

—//—

5.2.2. Multiplication and division

mul

Multiplication of the 8bit digit can give product of 16bit length:

 111111100000 0001 — product

In the same way 16bit * 16bit can give 32bit product

multiplicand
AL
8bit

*

multiplier
Operand
8bit

product
AH
AL

 AX

 multiplicand
AX
16bit

*

 multiplier
Operand
16bit

 product
DX
AX
32bit

MUL

Division is performed in reverse order as multiplication:

 AL
quotient

AH
AL
Operand8 =

 AH
remainder

 AX
quotient

DX
AX
Operand16 =

 DX
remainder

IMUL

IDIV

(correct)
(incorrect)

5.3. Control Transfer Instructions

Usually processor performs instructions one after another. Address of current instruction in memory is defined as:

[CS] * 16 + [IP]

IP — instruction pointer

Address of next instruction is equal to:

IPnew = [IP]old + InstructionLength

1..6 bytes

The first instruction in the program is called «entry point». We must tell assembler about entry point in the END pseudo-op:

entry point

addsub
proc
far

...

addsub
endp

...

end
addsub : refers to entry point

Usually the computer executes one or another part of the program, checking certain conditions. To switch between various parts of the program special control transfer instructions are used. This instructions change normal control flow changing contents of IP:

JMP

Unconditional jump

jmp
label

jmp
far label

jmp
near label

This instruction transfers control to the instruction by label.

EXAMPLE:

mov
ax,bx

add
dx,ax

jmp
label_1

label_0:
mov
memory,dx

...

label_1:
mov
new_location,dx

Along with unconditional jump there are 17 conditional jumps. Such jumps are performed if one of the flags or combination of processor’s flags is equal to 1 or to 0.

Table 5.2.

Conditional jumps

Mnemonic
Alternative

mnemonic
Jump

condition
Name
C,C++

notation

jz
je
ZF=1
jump if zero, jump if equal
==0

jnz
jne
ZF=0
jump if not zero
!=0

js

SF=1
jump on sign
>0

jns

SF=0
jump if no sign
<0

jo

OF=1
jump if overflow
—

jno

OF=0
jump if no overflow
—

jp
jpe
PF=1
jump if parity (even)
—

jnp
jpo
PF=0
jump if no parity (parity odd)
—

jb
jnae, jc
CF=1
jump if below (not above or equal, if carry)
<

Unsigned
jnb
jae, jnc
CF=0
if not below, Above or Equal, No Carry
>=

jbe
jna
CF=1 or ZF=1
if Below or Equal, if Not Above
<=

jnbe
ja
CF=0 and ZF=0
Not below nor equal, if Above
>

jl
jnge
SF№OF
if Less, if Not Greater Nor Equal
<

Signed
jnl
jge
SF=OF
if Not Less, if Greater or Equal
>=

jle
jng
ZF=1 or SF№OF
if Less or Equal, if Not Greater
<=

jnle
jg
ZF=0 and SF=OF
if Not Less Nor Equal, if Greater
>

All these instructions DO NOT CHANGE values of flags, therefore it is possible to use one instruction after another.

Conditional jumps often are used after CMP instruction. CMP performs internal subtraction and sets value of flags. For example, we have two values:

value1
dw
17

value2
dw
15

and want computer to select the max value. We can subtract value1 - value2 =

 17 - 15 = 2 (SF=0 (result > 0)

 ZF=0 (non zero)

 OF=0 (no overflow)

After CMP instruction we can perform conditional jump according to values of these flags:

EXAMPLE:

Flow-chart:

[image: image1.wmf] Entry point

 Provide

 addressing

 max=0

 ax=value1

 compare

 ax and value2

 <=

 ax value2

 >

val1_le_val2:

 ax=value2

done:

 max=ax

 return

 to DO

S

Along with CMP instruction we’ll widely use TEST instruction.

Test
op1,op2

op1 & op2 (flags

EXAMPLE:

Flow-chart:

How to print char string on the display:

text
db
‘any text you want’,13,10,’$’

...

mov
ah,9

mov
dx,offset text

int
21h

...

5.4. Loop instructions

All programs have parts of code that are repeatedly executed. In HLL cyclic execution of the same block was called ‘cycle’. In Assembly language — LOOP.

Of course, repetition cannot be performed infinitely. Therefore, each loop tests something, and if condition is false, loop is stopped:

Assembly language equivalent:

mov
cx,N

continue:

do something

 useful

dec
cx

this pare of instructions is so often used, that they are implemented

jnz
begin

as one instruction loop

...

mov
cx,N

continue:

do something

loop
continue

Loop instructions

Table 5.3

Mnemonic
Alternative

mnemonic
Condition

for repetition
Name

loop

[CX]№0
loop

loopz
loope
ZF=1 and [CX]№0
loop if zero

loop if equal

loopnz
loopne
ZF=0 and [CX]№0
loop if not zero

loop if not equal

jcxz

[CX]=0
jump if CX=0

Loop, loopnz and loopz work as follows:

a) cx=[cx]-1

b) test condition

c) if condition is true and [cx]>0 goto label

NO FLAGS ARE MODIFIED

EXAMPLE:

EXAMPLE: find in array AllZeroes the first non-zero element and store its index into Index variable

title

find in array AllZeroes the first non-zero element

dseg

segment
para ‘DATA’

AllZeroes
db

0,0,0,0,1,0,0

Index

dw

?

ends

codeseg
segment
para ‘CODE’

assume
cs:codeseg, ds:dseg, ss:stack

example
proc

far

mov

ax,dseg

mov

ds,ax

mov

cx,7
;
number of items in AllZeroes

mov

di,-1

new_test:
inc

di

cmp

AllZeroes[di],0

loopz

new_test

jz

not_found

mov

Index,di

jmp

done

not_found:
mov

Index,-1

done:

mov

ax,4c00h

int

21h

endp

STACK

end

example

EXAMPLE: the program that finds in array of integer words the greatest element

[image: image2.wmf] Entry point

 provide

 addressing

 min = max value

 di = 0

 cx = length of array

test_new_item

 bx = min

>

 array[di]<>min

<=

 bx = array[di]

 min = bx

 min_is_ok:

 di = di + 2

 because item

 cx = cx - 1

 length = 2 bytes

 no

 [cx] = 0

 yes

 return

 to MS DOS

EXAMPLES: two-dim arrays

Registers:

di — index by cols

si — index by rows

Memory allocation for Matrix:

Memory is linear and matrix is projected from 2 dims into 1.

5.5. Bitwise instructions

a) sign extension: CBW, CWD

Dividend must be of double length:

for bytes:

AH
AL

for words:

DX
AX

For unsigned numbers we can simply move zeroes to AH or to DX. For signed numbers AH or DX should contain the sign:

s AL

 CBW (convert byte to word)

 s
 AL

 CWD (convert word to double)

Table 5.4.

Signed
Unsigned

8 bit / 8 bit
mov al,dividend

cbw

idiv divisor
mov al,dividend

mov ah,0

div divisor

16 bit / 16 bit
mov ax,dividend

cwd

idiv divisor
mov ax,dividend

mov dx,0

div ax

b) bit manipulation instructions:

Table 5.5.

Type
Mnemonic
Format
Affected flags
HLL
Action

logical
AND

OR

XOR

NOT

TEST
and dest,source

or dest,source

xor dest,source

not dest

test op1,op2
SF, ZF, PF

SF, ZF, PF

SF, ZF, PF

—————

SF, ZF, PF
&

|

^

~

dest = dest & source

dest = dest | source

dest = dest (source

negation

op1 & op2 (flags

shifts
SAL

SHL

SAR

SHR
sal dest,count

shl dest,count

sar dest,count

shr dest,count
OF, SF, ZF, PF, CF

OF, SF, ZF, PF, CF

OF, SF, ZF, PF, CF

OF, ZF, PF, CF
<<

<<

>>

>>
shift arithm to left

shift logical to left

shift arithm to right

shift logical to right

Rotation
ROL

ROR

RCL

RCR
rol dest,count

ror dest,count

rcl dest,count

rcr dest,count
OF, CF

OF, CF

OF, CF

OF, CF
—

—

—

—
rotate to left

rotate to right

rotate through carry to left

rotate through carry to right

THERE: dest can have any addr. mode except for immediate mode, count can be 1 or CL.

5.5.1. Bitwise &, |, ^, ~

AND — is used to extract selected bits from destination:

mov
al,Something
select left part

and
al,0fh

of byte

Let
Something
=
01011100

0fh

=
00001111

al

=
00001100

right nibble of Something

OR — is used to put bits into dest:

EXAMPLE: replace left nibble of AH with 0101B:

1)
and
ah,0fh;
erase left part of AH

2)
or
AH,50h

AH before &:
1011 0111

step 1) 0fh:
0000 1111

0000 0111 — erase left part

step 2) 50h:
0101 0000

 ah =
0101 0111 — 0101B written to AH.

XOR — can be used for inversion and for reset of destination:

xor
ah,0ffh
;
negation

Let AH
= 01101110

 0ffh
= 11111111

now AH
= 10010001 — inversion

xor
ah,ah

;
clearance

Let AH
= 01101110

 0ffh
= 01101110

 00000000

TEST — sets and resets flags according to result of dest & source

EXAMPLE: are bits 0 and 1 of AH set?

test
ah,03h

jnz
Bits01AreSet

NOT — two’s complement:

·
mov
bh,01010101B

·
not
bh
;
now bh=10101010B

5.5.2. Shifts

SHL
dest,count

 0

SAL
dest,count
 CF
 dest

SHR
dest,count
 0

 dest
 CF

SHL
dest,count

 dest
 CF

sign fills free bits

Difference between SHR and SAR — arithm shift fills free bits (from left) with sign, but SHR fills them with 0.

There count can be 1 or CL.

EXAMPLE
mov
cl,4

mov
al,1h

shl
al,cl;
multiply by 16

EXAMPLE:
mov
cl,2

mov
bx,11100110B

shr
bx,cl;
now bx=11111001

 sign

 equivalent

 of division

EXAMPLE:
shift by 4:

shr
al,1(

shr
al,1(

shr
al,1(

shr
al,1(
5.5.3. Rotation instructions

 dest

ROR
dest,count

 CF

 dest

RCL
dest,count

 CF

RCR
dest,count

 dest
 CF

ROL
dest,count

 CF
 dest

5.5.4. XLAT (translate) instruction

BX contains effective address of translation table AL is used as index in the transl. table.

After instruction

XLAT
table

contents of AL will be replaced by byte with address [bx]+[al] from table. In our example AL will contain the code of letter ‘A’ = 01000001B

EXAMPLE: translation from binary into hexadecimal image and output to screen.

For each byte in «source»

 left nibble right nibble

 source
 XLAT
 XLAT

 table
table

 byte

 byte

5.6. String manipulation instructions

In assembly language «string» is the sequence of bytes or words in memory. Max length of the string is 64K bytes.

String instructions are implemented as primitives. Each primitive process only one byte or one word. In order to process sequence of bytes (words) repeat prefixes are used.

Name
Format
Alternative format
Action
Changed flags

Move strings
MOVSB, MOVSW
MOVS dest,source
dest (source,

SI++, DI++ | SI--, DI--
—

Compare strings
CMPSB, CMPSW
CMPS dest,source
dest - source (flags,

SI++, DI++ or SI--, DI--
OF, SF, ZF, AF, PF, CF

Scan string
SCASB, SCASW
SCAS dest
AL (or AX) - dest (flags,

DI++ or DI--
OF, SF, ZF, AF, PF, CF

Load string
LODSB, LODSW
LODS source
AL (or AX) = source,

SI++
—

Store string
STOSB, STOSW
STOS dest
dest = AL (or AX),

DI++
—

1. In mnemonic B means «byte», W — «word».

2. Operands are addressed by DI and SI registers for Destination and Source.

3. Instructions with suffixes B and W do not have operands, because addresses of operands are already loaded in DI and SI. In alternative format like

MOVS
DEST,SOURCE

operands are necessary because Assembler automatically defines type of operands and replaces MOVS into MOVSB for bytes or MOVSW for words.

4. Index registers DI and SI can be increased or decreased by 1 for bytes and by 2 for words.

5. DI and SI are increased or decreased accordingly to the value of DF (Direction flag).

Bytes
Words

Bytes
Words

DF=0
SI++

DI++
SI+=2

DI+=2
DF=1
SI--

DI--
SI-=2

DI-=2

Instructions to control DF:

CLD — clear direction flag : DF=0

STD — set direction flag : DF=1

Summary: each primitive instruction handles only one byte or word. Additionally it modifies DI and SI. Repeat prefixes allow to repeat primitive instruction for given number of iterations or for given condition.

Table 5.7.

Mnemonic
Alternative mnemonic
Name
Condition of repetition

REP
—
repeat
[CX](0

REPE
REPZ
repeat while equal (zero)
[CX](0 && ZF=1

REPNE
REPNZ
repeat while not equal (not zero)
[CX](0 && ZF=0

In string instructions Destination is always in EXTRA segment and source is usually in Data segment.

Prefixes check not only flag ZF but also the contents of counter CX. It is necessary to avoid infinite repetitions.

5.6.1. String copying

EXAMPLE:

dseg

segment
para ‘DATA’

TheSource

db

256 dup(?)

ends

eseg

segment
para ‘EXTRA’

TheDestination
db

256 dup(?)

ends

...

;
move string of 256 bytes

cld

lea

si,DS:TheSource

lea

di,ES:TheDestination

mov

cx,256

rep

movsb

...

In this example the notation

Segment : Offset

was used.

 It is so called «segment override prefix». We can use it to address source in extra segment:

eseg

segment
para ‘EXTRA’

TheSource

dw

128 dup(?)

TheDestination
dw

128 dup(?)

ends

...

cld

lea

si,es:TheSource

lea

di,es:TheDestination

mov

cx,128

rep

movsw

5.6.2. String comparison

Characters in MS-DOS computer are represented in ASCII code (ASCII stands for American Standard Code for Information Interchange).

Each character is encoded by 8 bits or byte. Totally ASCII standard contains 256 codes. Because they are bytes (i.e. binary numbers), they can be compared as numbers:

If processor compares two strings it compares them from left to right while characters are equal. When the most left different chars are found , processor can subtracts code of source byte from code of dest byte and sets values of flags. These values can be checked later with the help of jump instruction.

EXAMPLE: string comparison

5.6.3. String scanning.

These instructions (SCASB and SCASW) perform search of a given value in the string in extra segment. Offset of the 1st string element should be in DI register. The pattern that is searched should be placed in AL (or AX for words).

String scanning is similar to string comparison but each byte (word) in destination is compared with AL (AX) register.

EXAMPLE: in C language string are represented in ASCIIZ format (string is finished by Zero). Function strlen(String) returns index of zero byte.

According to rules of machine language the String must be in EXTRA segment. In our example with the help of special trick string will be located in extra seg:

dseg

segment
para ‘DATA’

String
db

‘Find out my length’,0
; ASCII string

ends

cseg

segment
para public ‘CODE’

...

push

es

push

ds

pop

es
; now es=ds

lea

di,ds:String

cld

mov

al,0
; looking for zero byte

mov

cx,100; max. possible length

repne

scasb

jne

ZeroNotFound

; in this point DI = offset of byte next to zero byte

...

ZeroNotFound:

...

In this example

 instructions make es=ds

push DS

pop ES

 DS
 Dataseg

 Stack

 ES

5.6.4. Load and store instructions

LODS —
this primitive instruction loads byte (or word) from memory into AL (AX). After that SI is modified.

STOS —
stores byte (word) from AL (AX) into memory. After that DI is modified.

The repeat prefix before LODS has no meaning because it loads new value automatically and programmer can not use this value in AL (AX).

Repeat prefix for STOS can be used to fill memory area with initial values (like linker in HLL):

mov
di,offset dest
(

mov
al,0

(
fill 32 Kbytes of dest

mov
cx,0ffffh

(
with zeroes

rep
stosb

(
Together LODS and STOS are used to organize so called ‘complex’ string instructions, where special actions are performed after loading and before storing of a char (a word).

EXAMPLE:

replace sequence of byte values with their negative values:

lea
si,Sequence

lea
di,sequence

jcxz
all_done
; if cx==0 bypass cycle

repeat:

lods
Sequence

neg
al

stos
Sequence

loop
repeat

all_done:

The instruction jcxz all_done is necessary because loop should not be executed when counter cx=0. Instruction jcxz checks [cx] and performs jumping, if [cx]==0.

5.7. Stack instructions

Stack is data structure that works in LIFO order (Last In First Out).

Stack is placed in separate segment. Access to it is performed via SS:

 ss

 Stack
 SP

 segment

Stack instructions

Table 5.8.

Mnemonic and format
Name
Action

PUSH source
push
SP = [SP] - 2

[SP+1,SP] = source

POP dest
pop
dest = [SP+1,SP]

SP = [SP] + 2

PUSHF
push flags
SP = [SP] - 2

[SP+1,SP] = (PSW)

POPF
pop flags
(PSW) = [SP+1,SP]

SP = [SP] + 2

PUSHA
push all registers

POPA
pop all registers

PSW (processor status word) — 16bit register with flags

O
D
I
T
S
Z

A

P

C

Let us call Top of the Stack the word, pointed by SP (stack pointer).

SP register always point to the last word in the stack (the Top). Therefore, if PUSH firstly decreases SP and after that writes, then POP firstly read top level word from stack and after that increases SP:

To use stack in the program it is necessary to load not only stack segment register SS, but also stack pointer SP, which must point to the last word in stack segment (stack grows to lower addresses):

StackSeg
segment
para stack ‘STACK’

dw

128 dup (?)

TopOfStack
dw

?

ends

CodeSeg
segment
para public ‘CODE’

assume
cs:CodeSeg,ss:StackSeg

mov

ax,StackSeg

mov

ss,ax

mov

sp,offset TopOfStack

...

Usage of the stack:
1. Exchange registers contents

2. Save registers for further usage (situation «not enough registers»)

EXAMPLE: nested cycles.

mov
cx,100

cycle1:
push
cx

mov
cx,200

cycle2:
...

loop
cycle2

pop
cx

loop
cycle1

3. Save registers

Saving and restoring registers in procedures

push
ax

push
bx

push
cx

push
dx

...

pop

dx
registers are extracted

pop

cx
from the stack in

pop

bx
order, opposite to

pop

ax
pushing order

4. Organize procedures calls and returns

5.8. Procedures in assembly language

Definition:

Procedure (or subroutine) is the portion of instructions that can be invoked several times from different points in the program

To perform control transfer to procedure code the CALL instruction is used.

CALL is similar to JMP instruction, but address of next instruction is saved in stack.

CALL
func
is equiv
push
offset next

to
jmp
func

next:

In this example next is so called ‘return address’.

If procedure is called several times then return addresses are different. Actually the return address is the address of instruction next to CALL instruction.

In first case:
push
0103h

In second case:
push
0203h

ip=0500

ip=0500

Now to return from procedure it is necessary simply to extract return addr from the stack: RET instruction in first case is equiv to
pop
ip
ip=0103

 in second case

pop
ip
ip=0203

CALL instructions can be in the same segment or intersegment. If CALL is intersegment, not only IP is pushed to the stack, but also the CS register.

Table 5.9

Format
Type
Action

CALL Dest
intrasegment
SP = [SP] - 2, [SP+1,SP] = IP

IP = EA(Dest)

CALL Dest
intersegment
SP = SP - 2, [SP+1,SP] = CS

SP = SP - 2, [SP+1,SP] = IP

IP = EA(Dest), CS = new addr. from instr. last word

RET
intrasegment
IP = [SP+1,SP], SP = SP + 2

RET
intersegment
IP = [SP+1,SP], SP = SP + 2

CS = [SP+1,SP], SP = SP + 2

RET expr
intrasegment
IP = [SP+1,SP], SP = SP + 2, SP = SP + expr

EXAMPLE: parameters are passed via registers. Parameters are passed by values.

Explanation:

In Power procedure the bx register is used. But if Main proc also uses bx, it contents will be spoiled. To avoid this, registers, that are used in proc, are pushed in stack in the beginning and are popped back before return from proc.

EXAMPLE: parameters passed by registers via value and by pointer.

EXPLANATION:

6. Structures

Structure is a syntax construction that permits to unite various data types into new data type.

EXAMPLE:

typedef struct

Ship

struct

{

Name

db

16 dup(?)

 char Name[16];

Owner

db

16 dup(?)

 char Owner[8];

Tonnage
dw

?

 int Tonnage;

ends

} Ship;

As in HLL, struc doesn’t allocate space in memory, it is simply defines how data will be laid out later.

EXAMPLE:

Ships
ship
<’Flying Dutchman’,’devil’,0>

<’Aurora’,’Lenin’,5200>

<’Ark’,’Noah’,37000>

<’Santa Maria’,’Columbus’,130>

Access to structure elements:

lea
bx,Ships

mov
ax,[bx].Tonnage

offset.fieldname

Memory layout for given example:

Flying Dutchman devil 0 0

 26

 26

 bx+16

 +0

 bx

lea
bx,Ships

next_ship:

mov
ax,[bx].Cannons

cmp
ax,0

jz
Peaceful

lea
si,[bx].Name

mov
cx,length Ship.Name

lea
di,PrintArea

cld

rep
movsb
; copy to printing area

mov
ax,9h

mov
dx,offset PrintArea

int
21h

add
bx,length Ship

loop
next_ship

7.1. Comparison of macros and procedures

+1. Proc code is present in one copy. Macro is expanded as many times as macro call is used.

+2. Macros is more fast than proc, because proc spends additional time to receive parameters and to save/restore registers.

-3. When macroses are used the length of program increases.

Summary: not very long but frequently used sequences of assembly language operators can be implemented as macros.

7.2. Macro language pseudo-ops

Table 7.1.

Pseudo-op
Format
Action

MACRO
name MACRO arglist

 ...

 ENDM
Assigns the name to the sequence in MACRO ... ENDM brackets.

LOCAL
LOCAL Label1,Label2,...
Assembler will create unique name instead of Label1, Label2, ...

IRP (iterative repeat)
IRP param,<Value1,Value2,...>

...

ENDM
Every occurrence of param between IRP ... ENDM will be substituted with Value1, then with Value2, etc.

IRPC (iterative repetitions for chars)
IRPC param,string

...

ENDM
Each occurrence of param in the macros body will be replaced by each character from string.

REPT (repeat)
REPT expression

...

ENDM
1. Expression is calculated and defines number of rep. N

2. Sequence between REPT ... ENDM is expanded N times.

EXITM (exit from macro)
EXITM
Finishes the macro-expansion process.

IF1 (if first pass)
IF1

...

ENDIF
The sequence in brackets IF1 ... ENDIF is translated only if assembler performs the 1st pass.

IFB (if blank)
IFB <argument>

...

ENDIF
If value of argument is blank, the sequence in IFB ... ENDIF brackets is translated. Otherwise it is bypassed.

IFNB (if not blank)
IFNB <argument>

...

ENDIF
If value of argument is not blank, the sequence in IFNB ... ENDIF brackets is translated. Otherwise it is bypassed.

7.2.1. Macro definition MACRO ... ENDM
7.2.2. LOCAL — generator of unique labels

EXAMPLE of IRP

SaveRegs
MACRO
RegisterList

Mcall SaveRegs <AX,BX,CX,DX>

 IRP
reg,RegisterList

 push
reg

 expands into

 ENDM

ENDM

 push
AX

 push
BX

The same result can be obtained with

 push
CX

 push
DX

SaveRegs
MACRO
RegString

 IRPC
reg,RegString

 push
reg&x

 ENDM

ENDM

& — is concatenation operation (only during translation)

7.2.3. IF-pseudo ops and EXITM

DateGen
MACRO
day,month,year

 IFB
<day>

Mcall

 EXITM

DateGen 19,07,96

 ENDIF

will be expanded into

 IFB <month>

db
19

 EXITM

db
7

 ENDIF

dw
96

 db
day

 db
month

Mcall

 IFB
<year>

DateGen 19,07

 dw
1996
; by default
will be expanded into

 EXITM

db
19

 ENDIF

db
7

 dw
year

dw
1996

ENDM

7.3. Macro libraries

Macro library is the file, that contains one or more macro-definitions:

EXAMPLES.MAC

Addition
MACRO

...

ENDM

...

Divide
MACRO

...

ENDM

...

DateGen
MACRO

...

ENDM

In order to use this file in the assembly program:

IF1

 INCLUDE
EXAMPLES.MAC

ENDIF

because assembler performs two passes during translation and it’s not necessary to include the same file twice.

8. Interruptions

Interruption is the special event that is handled by specialized procedure (interrupt handler). Interruption can occur at any moment and processor must be able to handle it.

CPU knows that interruption occurred due to two electrical inputs:

NMI — non maskable interrupt and

INTR — interrupt

NMI — when electric signal is present on their input, processor immediately calls interruption handler. Examples power supply fault, timer pulses, etc.

INTR — interruption by this line are usually organized by peripheral devices: keyboard, hard disk, printer.

For example, when user prints, CPU doesn’t wait for keystrokes, it performs other programs. But when key is pushed, the keyboard sends electric signal to the INTR input and transmits to CPU one byte, which identifies the type of interruption.

According to the type of interruption the CPU calls one of 256 interruption handlers. To perform CALL (in our case FAR CALL) it is necessary to know new IP and CS values. For all of 256 interruptions they are stored in special table. It is located in memory starting from absolute address 0. The name of the table — interruption descriptor table.

IDT

2 bytes
2 bytes

00000
IP
CS
int 0

00001
IP
CS
int 1

...
...

003FC
IP
CS
int 256

8.1. Interruption sequence

CPU accepts INTR signal and interruptions are enabled (IF=1)

1. CPU saves flags, IP and CS in the stack

2. CPU reads identification byte (interrupt number) and calculates offset as (IntNo)*4

3. CPU loads new values of IP and CS, using offset IntNo*4 and therefore, calls needed interrupt handler

4. When interrupt handler finishes its work, it performs instruction IRET (return from interruption). This instruction restores flags, old IP and old CS from stack and CPU continues interrupted process.

Together with external interruptions, which use INTR and NMI inputs of CPU, there are internal interruptions. CPU can interrupt itself with the help of INT n instruction. There n — integer value 0..255.

8.2. Interruption table layout (MS-DOS, real mode of x86)

00000
0-1Fh
interrupt vector of BIOS (Basic Input / Output System)

00080
20h-3Fh
interrupt vectors of DOS (disk operating system)

00100
reserved

00180
60-7Fh
user’s interrupt vectors

00200
80h-FFh
interrupt vectors of Basic language

8.2.1. Examples of BIOS interruptions

int. No
Name

0
divide by zero

1
single step execution

2
NMI

3
breakpoint

4
overflow

...

10
data exchange with display

...

16
data exchange with keyboard

...

8.2.2. Examples of DOS interruptions

int No
Name

20
end of program

21
DOS functions

...

23
Ctrl-Break handler

24
critical error handler

25
absolute disk read

26
absolute disk write

int 21h is used very often. With the help of int 21h programmer can call DOS functions. Number of function should be loaded in AH:

EXAMPLES:

actual length of string

1st 2nd

byte byte

 max. length of string

1. Read string from keyboard
dseg

segment

InputStr
db

48,49 dup(?)

ends

cseg

segment

...

lea

dx,InputStr

mov

ah,0ah

int

21h

mov

ch,0

mov

cl,InputStr+1
; actual length

...

1. Wait until key is pressed

...

mov
ah,8

int
21h

...

2. Print ASCII$ string

mov
ah,9h

mov
dx,offset PrintArea

int
21h

3. Get system date

mov
ah,2ah

int
21h

mov
year,cx

mov
month,dh

mov
day,.dl

...

4. Get system time

mov
ah,2ch

int
21h

mov
hours,ch

mov
mins,cl

mov
seconds,dh

_908966754.unknown

_910865024.unknown

_912067329.doc
����������� RowSum+0

	 +1

� si	 +2

	 +3

	 +4

	 +5

_912488134.doc
�Main

	 .

	 .			Power

��	 .

�	ax=x		 save registers

�	cx=i		 calculate

	call Power	 ax=result

�	 .		 restore registers

�	 .		 ret

	 .

_912491602.doc

 SP�	 IP

		 CS

 before ret 6	 result	 after ret 6

		 i

		 x

				 SP

_912833352.doc
� Code segm. reg	 Memory

CS 123A

				 123A0

		341B		 Code

��				 segment

				 157BB

_912834265.doc
��������� CS

� 0200				 CS

			 02000	 1400

	600			 Code

			 02600 segment

								 14000

						600			 Relocated

					 New address	 14600 code

									 segment

_912594359.doc
 address bus

�		 CPU

	 NMI	 x86

	 INTR

_912596230.doc
��	 address

�� int No	 CPU

�

��		INTR 1F	 interruption enable

���keyboard				 flag

		 NMI

������printer

�

�

�

HDD

_912601196.unknown

_912575276.doc
Main				func		macrofunc

	call func

						 body		macrofunc	 body

			 ret							of macrofunc

�	call func						macrofunc

										 body

										of macrofunc

_912490158.doc

		�		 SP	 IP

						 CS

 SP	 result			 result

		 i				 i

		 x				 x

		 before			 after

		 call				 call

_912490939.doc
��������		in the Power:

 SP	 BP

�		 IP

		 CS		 BP after	mov bp,sp

		 result [bp]+0		add bp,4

		 i	 [bp]+2

		 x	 [bp]+4

		 after

		 push bp

_912489370.doc
	Main

�

 ax = x				save regs

 cx = i

 di = address of result		calculate

 call Power				[di] = result	 (indirect register addressing)

					restore registers

�

					return

_912250502.doc
���			 0			 0		 (

			 2			 2		 (Stack grows

�			 4			 4		 (from higher

			 6			 6	 grow (addresses to

�			 8 SP	 [AX]	 8		 (lower

	SP		 A			 A top	 (

	 before PUSH AX	 after PUSH AX		 (

_912340108.unknown

_912341335.doc
CS:addresses

 CS:0000	main	proc	near

			...

 CS:0100		call	func

� CS:0103		...

 CS:0200		call	func

��� CS:0203		...

			endp

� CS:0500	func	proc	near

			 .

			 .

			 .

�			ret

			endp

_912252099.doc
���			 0			 0

			 2			 2

			 4			 4

			 6			 6

���	SP	 AX	 8 	 [AX]	 8	 BX

			 A	 SP		 A

	 before POP BX	 after POP BX	

_912244822.unknown

_912246414.unknown

_912237925.doc
����������table		bx = EA(table)

� +0	‘0’	al = 00001010 = 0ah

 +1	‘1’

 +2	‘2’

 +3	‘3’

 	 .

 .

	 .

 +9	‘9’

 +10	‘A’

	 .

 .

	 .

 +15	‘F’

_910940993.doc
��	 IP						 IP

������������������������������address

�									 jump back

���			 . . .

�			IP							 jump back

���			increases

�

�

�					 time			 jump			 time

	 0 1 2 3 4 5						 forward

 normal control flow

_911279838.doc
�

���	 Counter=N

 continue:

			 Some

	 cycle	 useful

	 body	 calculations

	 count=count-1

 no	 count==0

	 ?

		 yes

_912065854.doc

����������������� [bx] Matrix+0	 1

		 +2	 1

	 di	 +4	 1		1st

	 +2	 +6	 1		row

��		 +8	 1

	+6*2	 +A	 1

 bx	 +C	 2

		 +E	 2

		 +10	 2		2nd

		 +12	 2		row

		 +14	 2

		 +16	 2

_911132356.doc

����������������������������		 Flow-chart:		 load

			Entry point	 segment

					 register

		 dx=0

		 ax=year	 [0;year] — division preparation

		 [dx,ax]/4	 ax=quotient

				 dx=remainder

 year%4№0

	 no	 dx=0?	 remainder

			 yes

		 ax=year	 year%4=0

		 [dx,ax]/100

	 yes

		 dx=0?

	leap_year:	 no	 year%100№0

�		 print

		 ‘Leap year’

				done

	test400:

		 dx=0

		 ax=year

�		 [dx,ax]/400

	 yes dx=0?	 year%4!=0 || year%100№0

non_leap_year:	 no	 year%400№0

		 print

		‘Ordinary year’

		done:

		 return to

		 DOS

_910870747.unknown

_910870862.unknown

_910868028.unknown

_910610789.unknown

_910673899.doc
�

Assembly	Assembler

 language

��� text			 obj. code

�

					 .exe program

�				 Linker

��

 obj���������.

� libraries

_910861757.unknown

_910864798.unknown

_910858494.doc

���������������������������							 DS	 01200

 BX	 00AE		 memory

										 offset

						012AD				 =AE

				 A1	012AE		profit

�				 32	012AF

 AX	 32A1

_910612190.unknown

_910613785.unknown

_910611968.unknown

_910526108.unknown

_910609960.unknown

_910610322.unknown

_910526918.unknown

_909046807.unknown

_909049312.unknown

_909045557.unknown

_907836900.unknown

_908965108.unknown

_908966477.unknown

_908966752.unknown

_908966302.unknown

_908020560.unknown

_908023738.unknown

_908010457.unknown

_907416668.unknown

_907836413.unknown

_907836511.unknown

_907501427.unknown

_907502434.unknown

_907499052.unknown

_907414856.unknown

_907415103.unknown

_882234985.doc

 Entry point

 provide

 addressing

 min = max value

 di = 0

 cx = length of array

test_new_item

 bx = min

 >

 array[di]<>min

 <=

 bx = array[di]

 min = bx

 min_is_ok:
 di = di + 2
 because item

 cx = cx - 1
 length = 2 bytes

 no

 [cx] = 0

 yes

 return

 to MS DOS

_907413087.unknown

_882233428.doc

 Entry point
 Provide

 addressing

 max=0

 ax=value1

 compare

 ax and value2

 <=
 ax value2
 >

val1_le_val2:

 ax=value2

done:
 max=ax

 return

 to DOS

